Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38653363

RESUMO

A functional lateralization has been reported in control of emotional responses by the medial prefrontal cortex (mPFC). However, a hemisphere asymmetry in involvement of the mPFC in expression of fear conditioning responses has never been reported. Therefore, we investigated whether control by mPFC of freezing and cardiovascular responses during re-exposure to an aversively conditioned context is lateralized. For this, rats had guide cannulas directed to the mPFC implanted bilaterally or unilaterally in the right or left hemispheres. Vehicle or the non-selective synaptic inhibitor CoCl2 was microinjected into the mPFC 10 min before re-exposure to a chamber where the animals had previously received footshocks. A catheter was implanted into the femoral artery before the fear retrieval test for cardiovascular recordings. We observed that bilateral microinjection of CoCl2 into the mPFC reduced both the freezing behavior (enhancing locomotion and rearing) and arterial pressure and heart rate increases during re-exposure to the aversively conditioned context. Unilateral microinjection of CoCl2 into the right hemisphere of the mPFC also decreased the freezing behavior (enhancing locomotion and rearing), but without affecting the cardiovascular changes. Conversely, unilateral synaptic inhibition in the left mPFC did not affect either behavioral or cardiovascular responses during fear retrieval test. Taken together, these results suggest that the right hemisphere of the mPFC is necessary and sufficient for expression of freezing behavior to contextual fear conditioning. However, the control of cardiovascular responses and freezing behavior during fear retrieval test is somehow dissociated in the mPFC, being the former bilaterally processed.

2.
Pflugers Arch ; 476(3): 351-364, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228895

RESUMO

Despite the importance of physiological responses to stress in a short-term, chronically these adjustments may be harmful and lead to diseases, including cardiovascular diseases. The lateral hypothalamus (LH) has been reported to be involved in expression of physiological and behavioral responses to stress, but the local neurochemical mechanisms involved are not completely described. The corticotropin-releasing factor (CRF) neurotransmission is a prominent brain neurochemical system implicated in the physiological and behavioral changes induced by aversive threats. Furthermore, chronic exposure to aversive situations affects the CRF neurotransmission in brain regions involved in stress responses. Therefore, in this study, we evaluated the influence of CRF neurotransmission in the LH on changes in cardiovascular function and baroreflex activity induced by chronic variable stress (CVS). We identified that CVS enhanced baseline arterial pressure and impaired baroreflex function, which were followed by increased expression of CRF2, but not CRF1, receptor expression within the LH. Local microinjection of either CRF1 or CRF2 receptor antagonist within the LH inhibited the baroreflex impairment caused by CVS, but without affecting the mild hypertension. Taken together, the findings documented in this study suggest that LH CRF neurotransmission participates in the baroreflex impairment related to chronic stress exposure.


Assuntos
Hormônio Liberador da Corticotropina , Região Hipotalâmica Lateral , Ratos , Animais , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Região Hipotalâmica Lateral/metabolismo , Barorreflexo , Encéfalo/metabolismo , Transmissão Sináptica
3.
Shock ; 61(2): 294-303, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38150372

RESUMO

ABSTRACT: We evaluated the participation of the endocannabinoid system in the paraventricular nucleus of the hypothalamus (PVN) on the cardiovascular, autonomic, and plasma vasopressin (AVP) responses evoked by hemorrhagic shock in rats. For this, the PVN was bilaterally treated with either vehicle, the selective cannabinoid receptor type 1 antagonist AM251, the selective fatty acid amide hydrolase amide enzyme inhibitor URB597, the selective monoacylglycerol-lipase enzyme inhibitor JZL184, or the selective transient receptor potential vanilloid type 1 antagonist capsazepine. We evaluated changes on arterial pressure, heart rate, tail skin temperature (ST), and plasma AVP responses induced by bleeding, which started 10 min after PVN treatment. We observed that bilateral microinjection of AM251 into the PVN reduced the hypotension during the hemorrhage and prevented the return of blood pressure to baseline values in the posthemorrhagic period. Inhibition of local 2-arachidonoylglycerol metabolism by PVN treatment with JZL184 induced similar effects in relation to those observed in AM251-treated animals. Inhibition of local anandamide metabolism via PVN treatment with URB597 decreased the depressor effect and ST drop induced by the hemorrhagic stimulus. Bilateral microinjection of capsazepine mitigated the fall in blood pressure and ST. None of the PVN treatments altered the increased plasma concentration of AVP and tachycardia induced by hemorrhage. Taken together, present results suggest that endocannabinoid neurotransmission within the PVN plays a prominent role in cardiovascular and autonomic, but not neuroendocrine, responses evoked by hemorrhage.


Assuntos
Benzamidas , Capsaicina/análogos & derivados , Carbamatos , Endocanabinoides , Choque Hemorrágico , Animais , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Choque Hemorrágico/metabolismo , Inibidores Enzimáticos , Vasopressinas/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-35798175

RESUMO

The insular cortex (IC) is a brain structure involved in physiological and behavioural responses during stressful events. However, the local neurochemical mechanisms involved in control of stress responses by the IC are poorly understood. Thus, this study aimed to investigate the involvement of glutamatergic neurotransmission within the IC in cardiovascular, autonomic and neuroendocrine responses to an acute session of restraint stress. For this, the selective NMDA glutamate receptor antagonist LY235959 (1 nmol/100 nL) or the selective non-NMDA glutamate receptor antagonist NBQX (1 nmol/100 nL) were microinjected into the IC 10 min before the onset of the 60 min session of restraint stress. We observed that the antagonism of NMDA receptors within the IC enhanced the restraint-evoked increase in arterial pressure and heart rate, while blockade of non-NMDA receptors did not affect these cardiovascular responses. Spontaneous baroreflex analysis demonstrated that microinjection of LY235959 into the IC decreased baroreflex activity during restraint stress. The decrease in tail skin temperature during restraint stress was shifted to an increase in animals treated with the NMDA receptor antagonist. Nevertheless, the blockade of either NMDA or non-NMDA glutamate receptors within the IC did not affect the increase in circulating corticosterone levels during restraint stress. Overall, our findings provide evidence that IC glutamatergic neurotransmission, acting via local NMDA receptors, plays a prominent role in the control of autonomic and cardiovascular responses to restraint stress, but without affecting neuroendocrine adjustments.


Assuntos
Antagonistas de Aminoácidos Excitatórios , Receptores de N-Metil-D-Aspartato , Animais , Pressão Sanguínea , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico , Frequência Cardíaca/fisiologia , Córtex Insular , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Restrição Física
5.
Brain Res Bull ; 181: 175-182, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35124160

RESUMO

Previous studies showed a prominent role of the medial prefrontal cortex (mPFC), especially the prelimbic (PL) and infralimbic (IL) subregions, in behavioral and physiological responses to stressful stimuli. Nevertheless, the local neurochemical mechanisms involved are not completely understood. In this sense, previous studies identified cholinergic terminals within the mPFC, and stressful stimuli increased local acetylcholine release. Despite these pieces of evidence, the specific role of cholinergic neurotransmission in different subregions of the mPFC controlling the cardiovascular responses to stress has never been systematically evaluated. Therefore, the purpose of this study was to investigate the involvement of cholinergic neurotransmission present within PL and IL in cardiovascular responses to an acute session of restraint stress in rats. For this, rats received bilateral microinjection of the choline uptake inhibitor hemicholinium-3 before exposure to restraint stress. The arterial pressure and heart rate (HR) increases and the decrease in tail skin temperature as an indirect measurement of sympathetically-mediated cutaneous vasoconstriction were recorded throughout the restraint stress session. The results showed that the depletion of acetylcholine within the PL caused by local microinjection of hemicholinium-3 decreased the tachycardia to restraint stress, but without affecting the pressor response and the drop in tail skin temperature. Conversely, IL treatment with hemicholinium-3 decreased the restraint-evoked pressor response and the sympathetically-mediated cutaneous vasoconstriction without interfering with the HR response. Taken together, these results indicate functional differences of cholinergic neurotransmission within the PL and IL in control of cardiovascular and autonomic responses to stressful stimuli.


Assuntos
Acetilcolina/fisiologia , Sistema Nervoso Autônomo/fisiologia , Pressão Sanguínea/fisiologia , Colinérgicos/farmacologia , Frequência Cardíaca/fisiologia , Inibidores da Captação de Neurotransmissores/farmacologia , Córtex Pré-Frontal/fisiologia , Estresse Psicológico/fisiopatologia , Transmissão Sináptica/fisiologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Hemicolínio 3/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Restrição Física
6.
Biomed Res Int ; 2021: 1156031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34423030

RESUMO

Here, we report the participation of N-methyl-D-aspartate (NMDA) glutamate receptor in the mediation of cardiovascular and circulating vasopressin responses evoked by a hemorrhagic stimulus. In addition, once NMDA receptor activation is a prominent mechanism involved in nitric oxide (NO) synthesis in the brain, we investigated whether control of hemorrhagic shock by NMDA glutamate receptor was followed by changes in NO synthesis in brain supramedullary structures involved in cardiovascular and neuroendocrine control. Thus, we observed that intraperitoneal administration of the selective NMDA glutamate receptor antagonist dizocilpine maleate (MK801, 0.3 mg/kg) delayed and reduced the magnitude of hemorrhage-induced hypotension. Besides, hemorrhage induced a tachycardia response in the posthemorrhage period (i.e., recovery period) in control animals, and systemic treatment with MK801 caused a bradycardia response during hemorrhagic shock. Hemorrhagic stimulus increased plasma vasopressin levels during the recovery period and NMDA receptor antagonism increased concentration of this hormone during both the hemorrhage and postbleeding periods in relation to control animals. Moreover, hemorrhagic shock caused a decrease in NOx levels in the paraventricular nucleus of the hypothalamus (PVN), amygdala, bed nucleus of the stria terminalis (BNST), and ventral periaqueductal gray matter (vPAG). Nevertheless, treatment with MK801 did not affect these effects. Taken together, these results indicate that the NMDA glutamate receptor is involved in the hemorrhagic shock by inhibiting circulating vasopressin release. Our data also suggest a role of the NMDA receptor in tachycardia, but not in the decreased NO synthesis in the brain evoked by hemorrhage.


Assuntos
Bradicardia/induzido quimicamente , Sistema Cardiovascular/metabolismo , Maleato de Dizocilpina/administração & dosagem , Choque Hemorrágico/metabolismo , Vasopressinas/sangue , Animais , Bradicardia/sangue , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Sistema Cardiovascular/efeitos dos fármacos , Modelos Animais de Doenças , Maleato de Dizocilpina/efeitos adversos , Injeções Intraperitoneais , Masculino , Sistemas Neurossecretores/efeitos dos fármacos , Sistemas Neurossecretores/metabolismo , Óxido Nítrico/metabolismo , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo
7.
Neuroendocrinology ; 110(1-2): 10-22, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31280264

RESUMO

AIMS: Acute restraint stress (RS) has been reported to cause neuronal activation in the supraoptic nucleus of the hypothalamus (SON). The aim of the study was to evaluate the role of SON on autonomic (mean arterial pressure [MAP], heart rate [HR], and tail temperature), neuroendocrine (corticosterone, oxytocin, and vasopressin plasma levels), and behavioral responses to RS. METHODS: Guide cannulas were implanted bilaterally in the SON of male Wistar rats for microinjection of the unspecific synaptic blocker cobalt chloride (CoCl2, 1 mM) or vehicle (artificial cerebrospinal fluid, 100 nL). A catheter was introduced into the femoral artery for MAP and HR recording. Rats were subjected to RS, and it was studied the effect of microinjection of CoCl2 or vehicle into the SON on pressor and tachycardic responses, drop in tail temperature, plasma oxytocin, vasopressin, and corticosterone levels, and anxiogenic-like effect induced by RS. RESULTS: SON pretreatment with CoCl2 reduced the RS-induced MAP and HR increase, without affecting the RS-evoked tail temperature decrease. Microinjection of CoCl2 into areas surrounding the SON did not affect RS-induced increase in MAP and HR, reinforcing the idea that SON influences RS-evoked cardiovascular responses. Also, SON pretreatment with CoCl2 reduced RS-induced increase in corticosterone and oxytocin, without affecting vasopressin plasma levels, suggesting its involvement in RS-induced neuroendocrine responses. Finally, the CoCl2 microinjection into SON inhibited the RS-caused delayed anxiogenic-like effect. CONCLUSION: The results indicate that SON is an important component of the neural pathway that controls autonomic, neuroendocrine, and behavioral responses induced by RS.


Assuntos
Sistema Nervoso Autônomo , Comportamento Animal/fisiologia , Sistemas Neurossecretores , Restrição Física/fisiologia , Estresse Psicológico , Núcleo Supraóptico/fisiologia , Animais , Sistema Nervoso Autônomo/metabolismo , Sistema Nervoso Autônomo/fisiopatologia , Modelos Animais de Doenças , Masculino , Sistemas Neurossecretores/metabolismo , Sistemas Neurossecretores/fisiopatologia , Ratos , Ratos Wistar , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
8.
Stress ; 23(2): 221-232, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31451018

RESUMO

Both the autonomic nervous system and the neuroendocrine system are activated by osmotic stimulation (OS) evoking cardiovascular effects. The current study investigated the mechanisms involved in the cardiovascular responses evoked by an acute osmotic stimulus with intraperitoneal (i.p.) injection of either isotonic (0.15 M NaCl) or hypertonic saline (0.6 M NaCl) in conscious rats. Hypertonic saline increased mean arterial pressure (MAP) and heart rate (HR) for 30 min, as well as plasma osmolality and sodium content. Urinary sodium and urinary volume were also increased. Pretreatment with the ganglion blocker pentolinium (i.v.) did not affect the pressor response, but significantly decreased the tachycardic response caused by OS. Pretreatment with the V1-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP (i.v.) reduced the pressor response, without affecting the tachycardic response evoked by the hypertonic OS. Neither the pressor nor the tachycardic response to OS was affected by pretreatment with either the oxytocin receptor antagonist atosiban or the α1-antagonist prazosin. Pretreatment with the ß1-antagonist atenolol had no effect on the pressor response, but markedly decreased the tachycardic response evoked by OS. Results indicate that i.p. hypertonic OS-evoked pressor response is mediated by the release of vasopressin, with a minor influence of the vascular sympathetic input.LAY SUMMARYIncreased plasma osmolality, such as that observed during dehydration or salt intake, is a potent stimulus yielding to marked cardiovascular and neuroendocrine responses. The intraperitoneal (i.p.) injection of hypertonic saline solution is a commonly used animal model to cause a sustained increase in plasma osmolality, leading to a cardiovascular response characterized by sustained blood pressure and heart increases, whose systemic mechanisms were presently studied. Our findings indicate that the pressor response to the i.p. osmotic stimulus (OS) is mediated mainly by the release of vasopressin into the blood circulation with a minor or even the noninvolvement of the vascular sympathetic nervous system, whereas activation of the sympathetic-cardiac system mediates the tachycardic response to OS.


Assuntos
Sistema Cardiovascular , Estresse Psicológico , Animais , Pressão Sanguínea , Frequência Cardíaca , Ratos , Solução Salina Hipertônica/farmacologia , Vasopressinas
9.
Artigo em Inglês | MEDLINE | ID: mdl-30395879

RESUMO

We investigated the involvement of nitrergic neurotransmission within the paraventricular nucleus of the hypothalamus (PVN) in modulation of local neuronal activation, autonomic and neuroendocrine responses and behavioral consequences of acute restraint stress in rats. Bilateral microinjections of the selective neuronal nitric oxide (NO) synthase (nNOS) inhibitor Nw-Propyl-L-arginine (NPLA) or the NO scavenger carboxy-PTIO into the PVN reduced arterial pressure and heart rate increases, as well as the fall in cutaneous tail temperature induced by restraint stress. PVN injection of either NPLA or carboxy-PTIO also inhibited restraint-induced increases in anxiety-related behaviors in the elevated plus-maze 24 h later. Local microinjection of NPLA or carboxy-PTIO into the PVN reduced the number of c-fos-immunoreactive neurons in the dorsal parvocellular, ventromedial, medial parvocellular and lateral magnocelllular portions of the PVN in animals subjected to restraint stress. However, neither NPLA nor carboxy-PTIO into the PVN affected restraint-induced increases in plasma corticosterone concentration. The present results indicate that PVN nitrergic neurotransmission acting via nNOS activation has a facilitatory influence on autonomic responses to acute restraint and the delayed emotional consequences of restraint stress. Our results also provide evidence of a prominent role of local nitrergic neurotransmission in PVN neuronal activation during stress.


Assuntos
Óxido Nítrico Sintase Tipo I/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Restrição Física/fisiologia , Estresse Psicológico/metabolismo , Transmissão Sináptica/fisiologia , Animais , Sistema Nervoso Autônomo/metabolismo , Corticosterona/sangue , Masculino , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar , Restrição Física/psicologia
10.
Brain Res ; 1652: 43-52, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27693394

RESUMO

Previously, we reported that microinjection of L-proline (L-Pro) into the paraventricular nucleus of the hypothalamus (PVN) caused vasopressin-mediated pressor responses in unanesthetized rats. In the present study, we report on the central mechanisms involved in the mediation of the cardiovascular effects caused by the microinjection of L-Pro into the PVN. Microinjection of increasing doses of L-Pro (3-100nmol/100nL) into the PVN caused dose-related pressor and bradycardic responses. No cardiovascular responses were observed after the microinjection of equimolar doses (33nmol/100nL) of its isomer D-Proline (D-Pro) or Mannitol. The PVN pretreatment with either a selective non-NMDA (NBQX) or selective NMDA (LY235959 or DL-AP7) glutamate receptor antagonists blocked the cardiovascular response to L-Pro (33nmol/100nL). The dose-effect curve for the pretreatment with increasing doses of LY235959 was located at the left in relation to the curves for NBQX and DL-AP7, showing that LY235959 is more potent than NBQX, which is more potent than DL-AP7 in inhibiting the cardiovascular response to L-Pro. The cardiovascular response to the microinjection of L-Pro into the PVN was not affected by local pretreatment with Nω-Propyl-l-arginine (N-Propyl), a selective inhibitor of the neuronal nitric oxide synthase (nNOS), suggesting that NO does not mediate the responses to L-Pro in the PVN. In conclusion, the results suggest that ionotropic receptors in the PVN, blocked by both NMDA and non-NMDA receptor antagonists, mediate the pressor response to L-Pro that results from activation of PVN vasopressinergic magnocellular neurons and vasopressin release into the systemic circulation.


Assuntos
Fármacos Cardiovasculares/administração & dosagem , Fármacos do Sistema Nervoso Central/administração & dosagem , Neurotransmissores/administração & dosagem , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Prolina/administração & dosagem , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Bradicardia/induzido quimicamente , Bradicardia/metabolismo , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Masculino , Microinjeções , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo
11.
Neuropharmacology ; 101: 379-88, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26477570

RESUMO

The bed nucleus of the stria terminalis (BNST) is a forebrain structure implicated in physiological and behavioral responses to emotional stress. However, the local neurochemical mechanisms mediating the BNST control of stress responses are not fully known. Here, we investigated the involvement of BNST cholinergic neurotransmission, acting via muscarinic receptors, in cardiovascular (increase in blood pressure and heart rate and fall in tail skin temperature) and neuroendocrine (increase in plasma corticosterone) responses and behavioral consequences (anxiogenic-like effect in the elevated plus-maze) evoked by acute restraint stress in rats. Bilateral microinjection into the BNST of either the choline uptake inhibitor hemicholinium-3 (3 nmol/100 nl) or the muscarinic receptor antagonist methylatropine (3 nmol/100 nl) enhanced the heart rate increase and inhibited the anxiogenic-like effect observed in the elevated plus-maze evoked by restraint. However, neither hemicholinium-3 nor methylatropine affected the increase in blood pressure and plasma corticosterone levels and the fall in tail skin temperature. Facilitation of local cholinergic signaling by microinjection of the acetylcholinesterase inhibitor neostigmine (0.1 nmol/100 nl) into the BNST reduced restraint-evoked pressor and tachycardiac responses and the fall in tail cutaneous temperature, without affecting the increase in plasma corticosterone. All effects of neostigmine were completely abolished by local BNST pretreatment with methylatropine. These findings indicate an opposite role of BNST cholinergic neurotransmission, acting via local muscarinic receptor, in control of cardiovascular responses (inhibitory influence) and emotional consequences (facilitatory influence) evoked by restraint stress. Furthermore, present findings provide evidence that BNST control of neuroendocrine responses to stress is mediated by mechanisms others than local cholinergic signaling.


Assuntos
Colinérgicos/farmacologia , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/fisiologia , Estresse Psicológico/patologia , Estresse Psicológico/fisiopatologia , Transmissão Sináptica/fisiologia , Análise de Variância , Animais , Pressão Sanguínea/efeitos dos fármacos , Colinérgicos/metabolismo , Corticosterona/sangue , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Lateralidade Funcional/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Microinjeções , Ratos , Ratos Wistar , Temperatura Cutânea/efeitos dos fármacos , Estresse Psicológico/sangue , Transmissão Sináptica/efeitos dos fármacos
12.
Brain Res ; 1602: 96-105, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25617821

RESUMO

The dorsal periaqueductal gray area (dPAG) is involved in cardiovascular modulation. In a previous study, we showed that noradrenaline (NA) microinjected into the dPAG caused a vasopressin-mediated pressor response, involving a relay in the hypothalamic paraventricular nucleus (PVN). In the present study, we evaluated the involvement of ionotropic glutamate receptors within the PVN in the cardiovascular response to NA microinjection into the dPAG of unanesthetized rats. Microinjection of the selective NMDA glutamate receptor antagonist LY235959 (2nmol/100nL) unilaterally into the PVN did not affect the cardiovascular response evoked by microinjection of NA (15nmol/50nL) into the dPAG. On the other hand, unilateral PVN pretreatment with the non-NMDA glutamate receptor antagonist NBQX (2nmol/100nL) significantly reduced the pressor and cardiac response caused by microinjection of NA into the dPAG. In addition, bilateral PVN pretreatment with NBQX (2nmol/100nL) blocked the cardiovascular response to NA injected into the dPAG. In conclusion, the present results suggest that bilateral PVN activation of non-NMDA glutamate receptors mediates the vasopressin-related cardiovascular response to the microinjection of NA into the dPAG.


Assuntos
Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Norepinefrina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Substância Cinzenta Periaquedutal/metabolismo , Agonistas alfa-Adrenérgicos/administração & dosagem , Animais , Pressão Sanguínea/efeitos dos fármacos , Bradicardia/metabolismo , Cateteres de Demora , Antagonistas de Aminoácidos Excitatórios/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Isoquinolinas/farmacologia , Masculino , Microinjeções , Norepinefrina/administração & dosagem , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Quinoxalinas/farmacologia , Ratos Wistar , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo
13.
Exp Physiol ; 98(10): 1411-21, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23733521

RESUMO

We hypothesize that a local ATP-NO-NMDA glutamate receptor interaction in the paraventricular nucleus (PVN) modulates the baseline mean arterial pressure and heart rate in unanaesthetized rats. The microinjection of α,ß-methylene ATP [methyl ATP; 0.06, 0.12 and 1.2 nmol (100 nl)(-1)] into the PVN caused pressor and tachycardiac responses. Cardiovascular responses evoked by methyl ATP [0.12 nmol (100 nl)(-1)] in the PVN were blocked by pretreatment with the ganglion blocker pentolinium (5 mg kg(-1) i.v.). Also, responses to the injection of methyl ATP [0.12 nmol (100 nl)(-1)] into the PVN were reduced by pretreatment with the selective P2 purinergic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid [0.5 nmol (100 nl)(-1)], the neuronal NO synthase inhibitor N(ω)-propyl-l-arginine [0.04 nmol (100 nl)(-1)] or the selective NMDA glutamate receptor antagonist LY235959 [2 nmol (100 nl)(-1)]. In addition, an injection of the NO donor sodium nitroprusside [27 nmol (100 nl)(-1)] into the PVN caused similar cardiovascular responses to those observed after methyl ATP, which were blocked by local pretreatment with LY235959. Therefore, the present results suggest that cardiovascular responses evoked by methyl ATP in the PVN involve a local production of NO, which promotes local glutamate release and activation of NMDA receptors that are probably located in pre-autonomic parvocellular neurons, leading to sympathetic nervous system stimulation.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Óxido Nítrico/fisiologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Arginina/análogos & derivados , Arginina/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Bloqueadores Ganglionares/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Masculino , Microinjeções , Óxido Nítrico/biossíntese , Nitroprussiato/farmacologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Quinazolinonas , Ratos , Ratos Wistar , Vigília
14.
Amino Acids ; 45(4): 797-810, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23744398

RESUMO

In the present study, we report on the cardiovascular effects caused by the microinjection of L-proline (L-Pro) into the supraoptic nucleus (SON) in unanesthetized rats: the possible involvement of ionotropic glutamate receptors in the SON, as well as the peripheral mechanisms involved in the mediation of its cardiovascular effects. We compared the L-Pro effects with those caused by the injection of L-glutamate (L-Glu) into the SON. Microinjection of increasing doses of L-Pro into the SON caused dose-related cardiovascular responses in unanesthetized rats that were similar to those observed after the injection of L-Glu. Pretreatment of the SON with either a selective non-NMDA (NBQX) or a selective NMDA (LY235959) glutamate receptor antagonist blocked the cardiovascular response to L-Pro. The dose-effect curve for the pretreatment with increasing doses of LY235959 was shifted to the left in relation to the curve for NBQX, showing that LY235959 is more potent than NBQX in inhibiting the cardiovascular response to L-Pro. On the other hand, the cardiovascular response to L-Glu was only significantly reduced by pretreatment with NBQX (2 nmol/100 nL), but not affected by LY235959 (2 nmol/100 nL). The pressor response to L-Pro was not affected by intravenous pretreatment with the ganglion blocker pentolinium, but it was blocked by intravenous pretreatment with the V1-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP. In conclusion, these results suggest that L-Pro has a selective receptor that is sensitive to ionotropic glutamate receptor antagonists. Its activation in the SON results in vasopressin release into the systemic circulation, causing pressor and bradycardiac responses.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Prolina/administração & dosagem , Prolina/farmacologia , Núcleo Supraóptico/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Masculino , Microinjeções , Ratos , Ratos Wistar
15.
Auton Neurosci ; 177(2): 244-52, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23735844

RESUMO

The hippocampus is a limbic structure that is involved in the expression of defensive reactions and autonomic changes in rats. The injection of L-glutamate (L-glu) into the ventral hippocampus (VH) decreases blood pressure and heart rate in anesthetized rats. Activation of NMDA receptors in the VH increases the production of nitric oxide (NO), leading to guanylate cyclase activation. The hypothesis of the present study was that a local NMDA receptor-NO-guanylate cyclase interaction mediates the cardiovascular effects of microinjection of L-glu into the VH. Microinjection of increasing doses of L-glu (30, 60 and 200 nmol/200 nL) into the VH of conscious rats caused dose-related pressor and tachycardiac responses. The cardiovascular effects of L-glu were abolished by local pretreatment with: the glutamate receptor antagonist AP-7 (0.4 nmol); the selective neuronal NO synthase (nNOS) inhibitor N(ω)-Propyl-L-arginine (0.04 nmol); the NO scavenger C-PTIO (2 nmol) or the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolol [4,3-a]quinoxalin-1-one (2 nmol). Moreover, these cardiovascular responses were blocked by intravenous pretreatment with: the ganglionic blocker mecamylamine (2mg/Kg); the nonselective ß-adrenergic receptor antagonist propranolol (2mg/Kg); the ß1-adrenergic receptor selective antagonist atenolol (1mg/kg). However, pretreatment with the selective α1-adrenergic receptor antagonist prazosin (0,5mg/kg) caused only a small reduction in the pressor response, without affecting the L-glu evoked tachycardia. In conclusion, our results suggest that cardiovascular responses caused by L-glu microinjection into the VH are mediated by NMDA glutamate receptors and involve local nNOS and guanylate cyclase activation. Moreover, these cardiovascular responses are mainly mediated by cardiac sympathetic nervous system activation, with a small involvement of the vascular sympathetic nervous system.


Assuntos
Pressão Sanguínea/fisiologia , Guanilato Ciclase/metabolismo , Frequência Cardíaca/fisiologia , Hipocampo/metabolismo , Óxido Nítrico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Ácido Glutâmico/administração & dosagem , Guanilato Ciclase/antagonistas & inibidores , Frequência Cardíaca/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Microinjeções/métodos , Óxido Nítrico/antagonistas & inibidores , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
16.
Eur Neuropsychopharmacol ; 23(11): 1611-22, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23201369

RESUMO

In the present study, the involvement of paraventricular nucleus of the hypothalamus (PVN) glutamate receptors in the modulation of autonomic (arterial blood pressure, heart rate and tail skin temperature) and neuroendocrine (plasma corticosterone) responses and behavioral consequences evoked by the acute restraint stress in rats was investigated. The bilateral microinjection of the selective non-NMDA glutamate receptor antagonist NBQX (2 nmol/ 100 nL) into the PVN reduced the arterial pressure increase as well as the fall in the tail cutaneous temperature induced by the restraint stress, without affecting the stress-induced tachycardiac response. On the other hand, the pretreatment of the PVN with the selective NMDA glutamate receptor antagonist LY235959 (2 nmol/100 nL) was able to increase the stress-evoked pressor and tachycardiac response, without affecting the fall in the cutaneous tail temperature. The treatment of the PVN with LY235959 also reduced the increase in plasma corticosterone levels during stress and inhibited the anxiogenic-like effect observed in the elevated plus-maze 24h after the restraint session. The present results show that NMDA and non-NMDA receptors in the PVN differently modulate responses associated to stress. The PVN glutamate neurotransmission, via non-NMDA receptors, has a facilitatory influence on stress-evoked autonomic responses. On the other hand, the present data point to an inhibitory role of PVN NMDA receptors on the cardiovascular responses to stress. Moreover, our findings also indicate an involvement of PVN NMDA glutamate receptors in the mediation of the plasma corticosterone response as well as in the delayed emotional consequences induced by the restraint stress.


Assuntos
Corticosterona/sangue , Núcleo Hipotalâmico Paraventricular/fisiologia , Receptores de Glutamato/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Estresse Psicológico/fisiopatologia , Transmissão Sináptica/fisiologia , Animais , Pressão Arterial/efeitos dos fármacos , Pressão Arterial/fisiologia , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Isoquinolinas/administração & dosagem , Isoquinolinas/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Microinjeções , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Quinoxalinas/administração & dosagem , Quinoxalinas/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Restrição Física , Temperatura Cutânea/efeitos dos fármacos , Temperatura Cutânea/fisiologia
17.
J Neurosci Res ; 90(11): 2193-200, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22715034

RESUMO

The periaqueductal gray area (PAG) is a mesencephalic area involved in cardiovascular modulation. Glutamate (L-Glu) is an abundant excitatory amino acid in the central nervous system (CNS) and is present in the rat PAG. Moreover, data in the literature indicate its involvement in central blood pressure control. Here we report on the cardiovascular effects caused by microinjection of L-Glu into the dorsomedial PAG (dmPAG) of rats and the glutamatergic receptors as well as the peripheral mechanism involved in their mediation. The microinjection of L-Glu into the dmPAG of unanesthetized rats evoked dose-related pressor and bradycardiac responses. The cardiovascular response was significantly reduced by pretreatment of the dmPAG with a glutamatergic M-methyl-D-aspartate (NMDA) receptor antagonist (LY235959) and was not affected by pretreatment with a non-NMDA receptor antagonist (NBQX), suggesting a mediation of that response by the activation of NMDA receptors. Furthermore, the pressor response was blocked by pretreatment with the ganglion blocker pentolinium (5 mg/kg, intravenously), suggesting an involvement of the sympathetic nervous system in this response. Our results indicate that the microinjection of L-Glu into the dmPAG causes sympathetic-mediated pressor responses in unanesthetized rats, which are mediated by glutamatergic NMDA receptors in the dmPAG.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Ácido Glutâmico/administração & dosagem , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Frequência Cardíaca/efeitos dos fármacos , Masculino , Microinjeções , Ratos , Ratos Wistar
18.
J Neurosci Res ; 90(11): 2183-92, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22740501

RESUMO

We investigated the cardiovascular effects of the microinjection of L-proline (L-Pro) into the third ventricle (3V) and its peripheral mechanisms. Different doses of L-Pro into the 3V caused dose-related pressor and bradycardiac responses. The pressor response to L-Pro injected into the 3V was potentiated by intravenous pretreatment with the ganglion blocker pentolinium (5 mg/kg), thus excluding any significant involvement of the sympathetic nervous system. Because the response to the microinjection of L-Pro into the 3V was blocked by intravenous pretreatment with the V1-vasopressin receptor antagonist dTyr(CH(2) )(5) (Me)AVP (50µg/kg), it is suggested that these cardiovascular responses are mediated by a vasopressin release. The pressor response to the microinjection of L-Pro into the 3V was found to be mediated by circulating vasopressin, so, given that the paraventricular nucleus of the hypothalamus (PVN) is readily accessible from the 3V, we investigated whether the PVN could be a site of action for the L-Pro microinjected in the 3V. The microinjection of L-Pro (0.033 µmoles/0.1 µl) into the PVN caused cardiovascular responses similar to those of injection of the 3V and were also shown to be mediated by vasopressin release. In conclusion, these results show that the microinjection of L-Pro into the 3V causes pressor and bradycardiac responses that could involve stimulation of the magnocellular cells of the PVN and release of vasopressin into the systemic circulation. Also, because the microinjection of L-Pro into the PVN caused a pressor response, this is the first evidence of cardiovascular effects caused by its injection in a supramedullary structure.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Prolina/administração & dosagem , Terceiro Ventrículo/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Frequência Cardíaca/efeitos dos fármacos , Masculino , Microinjeções , Ratos , Ratos Wistar
19.
Endocrinology ; 153(5): 2323-31, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22396452

RESUMO

We report changes in plasma arginine vasopressin (AVP) and oxytocin (OT) concentrations evoked by the microinjection of l-glutamate (l-glu) into the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus (PVN) of unanesthetized rats, as well as which local mechanisms are involved in their mediation. l-Glu microinjection (10 nmol/100 nl) into the SON increased the circulating levels of both AVP and OT. The AVP increases were blocked by local pretreatment with the selective non-N-methyl-d-aspartate (NMDA) receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) (2 nmol/100 nl), but it was not affected by pretreatment with the NMDA-receptor antagonist LY235959 (2 nmol/100 nl). The OT response to l-glu microinjection into the SON was blocked by local pretreatment with either NBQX or LY235959. Furthermore, the administration of either the non-NMDA receptor agonist (±)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrobromide (AMPA) (5 nmol/100 nl) or NMDA receptor agonist NMDA (5 nmol/100 nl) into the SON had no effect on OT baseline plasma levels, but when both agonists were microinjected together these levels were increased. l-Glu microinjection into the PVN did not change circulating levels of either AVP or OT. However, after local pretreatment with LY235959, the l-glu microinjection increased plasma levels of the hormones. The l-glu microinjection into the PVN after the local treatment with NBQX did not affect the circulating AVP and OT levels. Therefore, results suggest the AVP release from the SON is mediated by activation of non-NMDA glutamate receptors, whereas the OT release from this nucleus is mediated by an interaction of NMDA and non-NMDA receptors. The present study also suggests an inhibitory role for NMDA receptors in the PVN on the release of AVP and OT.


Assuntos
Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Núcleo Supraóptico/metabolismo , Vasopressinas/metabolismo , Animais , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/farmacologia , Masculino , Microinjeções , N-Metilaspartato/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Quinoxalinas/farmacologia , Ratos , Ratos Wistar , Núcleo Supraóptico/efeitos dos fármacos
20.
Clinics (Sao Paulo) ; 66(6): 1061-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21808876

RESUMO

OBJECTIVE: The objective of this study was to evaluate the involvement of peripheral nitric oxide (NO) in vagotomy-induced pulmonary edema by verifying whether the nitric oxide synthases (NOS), constitutive (cNOS) and inducible (iNOS), participate in this mechanism. INTRODUCTION: It has been proposed that vagotomy induces neurogenic pulmonary edema or intensifies the edema of other etiologies. METHODS: Control and vagotomized rats were pretreated with 0.3 mg/kg, 3.0 mg/kg or 39.0 mg/kg of L-NAME, or with 5.0 mg/kg, 10.0 mg/kg or 20.0 mg/kg of aminoguanidine. All animals were observed for 120 minutes. After the animals' death, the trachea was catheterized in order to observe tracheal fluid and to classify the severity of pulmonary edema. The lungs were removed and weighed to evaluate pulmonary weight gain and edema index. RESULTS: Vagotomy promoted pulmonary edema as edema was significantly higher than in the control. This effect was modified by treatment with L-NAME. The highest dose, 39.0 mg/kg, reduced the edema and prolonged the survival of the animals, while at the lowest dose, 0.3 mg/kg, the edema and reduced survival rates were maintained. Aminoguanidine, regardless of the dose inhibited the development of the edema. Its effect was similar to that observed when the highest dose of L-NAME was administered. It may be that the non-selective blockade of cNOS by the highest dose of L-NAME also inhibited the iNOS pathway. CONCLUSION: Our data suggest that iNOS could be directly involved in pulmonary edema induced by vagotomy and cNOS appears to participate as a protector mechanism.


Assuntos
Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Edema Pulmonar/metabolismo , Vagotomia/efeitos adversos , Animais , Inibidores Enzimáticos/uso terapêutico , Guanidinas/uso terapêutico , Masculino , NG-Nitroarginina Metil Éster/uso terapêutico , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Edema Pulmonar/tratamento farmacológico , Edema Pulmonar/etiologia , Edema Pulmonar/prevenção & controle , Ratos , Ratos Wistar , Índice de Gravidade de Doença , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...